CLIMBER: Galaxy–Halo Connection Constraints from Next-generation Surveys

Author:

Pearl Alan N.ORCID,Bezanson RachelORCID,Zentner Andrew R.ORCID,Newman Jeffrey A.ORCID,Goulding Andy D.ORCID,Whitaker Katherine E.ORCID,Johnson Sean D.ORCID,Greene Jenny E.ORCID

Abstract

Abstract In the coming decade, a new generation of massively multiplexed spectroscopic surveys, such as the Prime Focus Spectrograph Galaxy Evolution Survey (PFS), Wide Area Vista Extragalactic Survey-Deep (WAVES), and Multi-Object Optical and Near-infrared Spectrograph (MOONS) for the Very Large Telescope, will probe galaxies in the distant universe in vastly greater numbers than was previously possible. In this work, we generate mock catalogs for each of these three planned surveys to help quantify and optimize their scientific output. To assign photometry into the UniverseMachine empirical model, we develop the Calibrating Light: Illuminating Mocks By Empirical Relations procedure using Ultra Deep Survey with the Visible and Infrared Survey Telescope for Astronomy (UltraVISTA) photometry. Using the published empirical selection functions for each aforementioned survey, we quantify the mass completeness of each survey. We compare different targeting strategies by varying the area and targeting completeness, and quantify how these survey parameters affect the uncertainty of the two-point correlation function. We demonstrate that the PFS and MOONS measurements will be primarily dominated by cosmic variance, not shot noise, motivating the need for increasingly large survey areas. On the other hand, the WAVES survey, which covers a much larger area, will strike a good balance between cosmic variance and shot noise. For a fixed number of targets, a 5% increased survey area (and ∼5% decreased completeness) would decrease the uncertainty of the correlation function at intermediate scales by 0.15%, 1.2%, and 1.1% for our WAVES, PFS, and MOONS samples, respectively. Meanwhile, for a fixed survey area, 5% increased targeting completeness improves the same constraints by 0.7%, 0.25%, and 0.1%. All of the utilities used to construct our mock catalogs and many of the catalogs themselves are publicly available.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3