Estimating Galaxy Parameters with Self-organizing Maps and the Effect of Missing Data

Author:

La Torre ValentinaORCID,Sajina AnnaORCID,Goulding Andy D.ORCID,Marchesini DaniloORCID,Bezanson RachelORCID,Pearl Alan N.ORCID,Sodré Laerte

Abstract

Abstract The current and upcoming large data volume galaxy surveys require the use of machine-learning techniques to maximize their scientific return. This study explores the use of Self-Organizing Maps (SOMs) to estimate galaxy parameters with a focus on handling cases of missing data and providing realistic probability distribution functions for the parameters. We train an SOM with a simulated mass-limited lightcone assuming a ugrizY JHK s +IRAC data set, mimicking the Hyper Suprime-Cam Deep joint data set. For parameter estimation, we derive SOM likelihood surfaces considering photometric errors to derive total (statistical and systematic) uncertainties. We explore the effects of missing data, including which bands are particularly critical to the accuracy of the derived parameters. We demonstrate that the parameter recovery is significantly better when the missing bands are “filled in” rather than if they are completely omitted. We propose a practical method for such recovery of missing data.

Funder

NASA ADAP

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3