Including Neutrino-driven Convection in the Force Explosion Condition to Predict Explodability of Multidimensional Core-collapse Supernovae (FEC+)

Author:

Gogilashvili MariamORCID,Murphy Jeremiah W.ORCID,Miller Jonah M.ORCID

Abstract

Abstract Most massive stars end their lives with core collapse. However, it is not clear which explode as a core-collapse supernova (CCSN), leaving behind a neutron star, and which collapse to a black hole, aborting the explosion. One path to predict explodability without expensive multidimensional simulations is to develop analytic explosion conditions. These analytic conditions also provide a deeper understanding of the explosion mechanism and they provide some insight into why some simulations explode and some do not. The analytic force explosion condition (FEC) reproduces the explosion conditions of spherically symmetric CCSN simulations. In this follow-up manuscript, we include the dominant multidimensional effect that aids explosion—neutrino-driven convection—in the FEC. This generalized critical condition (FEC+) is suitable for multidimensional simulations and has potential to accurately predict explosion conditions of two- and three-dimensional CCSN simulations. We show that adding neutrino-driven convection reduces the critical condition by ∼30%, which is consistent with previous multidimensional simulations.

Funder

U.S. Department of Energy

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3