Abstract
Abstract
We present a simple criterion to predict the explodability of massive stars based on the density and entropy profiles before collapse. If a pronounced density jump is present near the Si/Si–O interface, the star will likely explode. We develop a quantitative criterion by using ∼1300 1D simulations where ν-driven turbulence is included via time-dependent mixing-length theory. This criterion correctly identifies the outcome of the supernova more than 90% of the time. We also find no difference in how this criterion performs on two different sets of progenitors, evolved using two different stellar evolution codes: FRANEC and KEPLER. The explodability as a function of mass of the two sets of progenitors is very different, showing: (i) that uncertainties in the stellar evolution prescriptions influence the predictions of supernova explosions; (ii) the most important properties of the pre-collapse progenitor that influence the explodability are its density and entropy profiles. We highlight the importance that ν-driven turbulence plays in the explosion by comparing our results to previous works.
Funder
DOE ∣ SC ∣ Nuclear Physics
Istituto Nazionale di Astrofisica
Ministero dell’Istruzione, dell’Università e della Ricerca
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献