Detection of Substructures in Young Transition Disk WL 17

Author:

Gulick Hannah C.ORCID,Sadavoy Sarah,Matrà LucaORCID,Sheehan PatrickORCID,van der Marel NienkeORCID

Abstract

Abstract WL 17 is a young transition disk in the Ophiuchus L1688 molecular cloud complex. Even though WL 17 is among the brightest disks in L1688 and massive enough to expect dust self-scattering, it was undetected in polarization down to Atacama Large Millimeter/submillimeter Array’s (ALMA’s) instrument sensitivity limit. Such low polarization fractions could indicate unresolved polarization within the beam or optically thin dust emission. We test the latter case by combining the high-sensitivity 233 GHz Stokes I data from the polarization observations with previous ALMA data at 345 and 100 GHz. We use simple geometric shapes to fit the observed disk visibilities in each band. Using our simple models and assumed dust temperature profiles, we estimate the optical depth in all three bands. The optical depth at 233 GHz peaks at τ 233 ∼ 0.3, which suggests the dust emission may not be optically thick enough for dust self-scattering to be efficient. We also find the higher-sensitivity 233 GHz data show substructure in the disk for the first time. The substructure appears as brighter lobes along the major axis, on either side of the star. We attempt to fit the lobes with a simple geometric model, but they are unresolved in the 233 GHz data. We propose that the disk may be flared at 1 mm such that there is a higher column of dust along the major axis than the minor axis when viewed at an inclination. These observations highlight the strength of high-sensitivity continuum data from dust polarization observations to study disk structures.

Funder

NSF and Smithsonian Institution

NSERC

Banting Postdoctoral Fellowship

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3