Solar Polar Magnetic Fields: Comparing Full-disk and High-resolution Spectromagnetograph Data

Author:

Petrie Gordon J. D.ORCID

Abstract

Abstract This is the first systematic comparison between photospheric polar magnetic field data from a full-disk synoptic observing program, the National Solar Observatory’s Synoptic Optical Long-term Investigations of the Sun Vector Spectromagnetograph (SOLIS/VSM), and a high-resolution vector spectromagnetograph, the Hinode Solar Optical Telescope Spectropolarimeter (SOT/SP). Polar magnetic fluxes derived from longitudinal magnetic field measurements from both telescopes and from SOT/SP full-Stokes vector data are all compared in the form of polar synoptic maps. Measurements taken over 35 day periods with advantageous rotation axis tilt angle are used; observations extend to the poles, and no synthetic pole-filling is needed. Polar fluxes are derived from longitudinal data assuming an approximately radial field, whereas those derived from vector data are based on measured vector magnitude and direction. However, the full-vector measurements may have a detection problem: polar fields are observed as mostly transverse from (near) Earth, and Zeeman sensitivity to transverse fields is significantly lower than for longitudinal fields. Accordingly, the SOT/SP vector-based polar fluxes are lower than the longitudinal-based fluxes from both telescopes, a result driven by pixels without sufficient Q and U signals for the full-Stokes inversions to detect significant radial field but with good Stokes V signal implying a significant field. Furthermore, the SOT/SP longitudinal-based fluxes are significantly higher than their VSM counterparts because of superior seeing-free spatial resolution and longer observation time. The SOT/SP longitudinal-based polar fluxes appear large enough to account for radial interplanetary field measurements whereas the SOT/SP vector-based and the VSM ones are generally too low.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3