Physical Model of Dust Polarization by Radiative Torque Alignment and Disruption and Implications for Grain Internal Structures

Author:

Lee Hyeseung,Hoang ThiemORCID,Le Ngan,Cho JungyeonORCID

Abstract

Abstract Dust polarization depends on mechanical properties of dust as well as on local environments. To understand how dust polarization varies with different properties, we model the wavelength-dependence polarization of starlight and polarized dust emission of aligned grains by simultaneously taking into account grain alignment and rotational disruption by radiative torques (RATs). We explore a wide range of the local radiation field and grain mechanical properties characterized by tensile strength (S max). We find that the peak wavelength shifts to shorter wavelengths as the radiation strength (U) increases due to the enhanced alignment of small grains. Grain rotational disruption by RATs tends to decrease the optical-NIR polarization but increase the UV polarization of starlight due to the conversion of large grains into smaller ones. In particular, we find that the polarization degree at 850 μm (P 850) does not increase monotonically with U or grain temperature (T d ), but it depends on S max of the grains. Our model can be tested with observations toward star-forming regions or molecular clouds irradiated by a nearby star, which have higher radiation intensities than the that of the average interstellar radiation field. Finally, we compare our predictions of the P 850T d relationship with Planck data and find that the observed decrease of P 850 with T d can be explained when grain disruption by RATs is accounted for, suggesting that as interstellar grains are unlikely to have a compact structure, perhaps they have a composite one. The variation of the polarization degree with U (or T d ) can provide a valuable constraint on the internal structure of cosmic dust.

Funder

National Research Foundation of Korea

Foundation for Polish Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3