Alignment and rotational disruption of dust grains in the Galactic Centre revealed by polarized dust emission

Author:

Akshaya M S1ORCID,Hoang Thiem12ORCID

Affiliation:

1. Korea Astronomy and Space Science Institute , Daejeon 34055, Republic of Korea

2. Korea University of Science and Technology , 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea

Abstract

ABSTRACT We study the alignment and rotational disruption of dust grains at the centre of our Galaxy using polarized thermal dust emission observed by SOFIA/HAWC+ and JCMT/SCUPOL at 53, 216, and 850 µm. We analysed the relationship between the observed polarization degree with total emission intensity, dust temperature, gas column density, and polarization angle dispersion. Polarization degree from this region follows the predictions of the RAdiative Torque (RAT) alignment theory, except at high temperatures and long wavelengths where we found evidence for the rotational disruption of grains as predicted by the RAdiative Torque Disruption mechanism. The grain alignment and disruption sizes were found to be around 0.1 and 1 µm,  respectively. The maximum polarization degree observed was around p ∼ 13 per cent at 216 µm and comes from a region of high dust temperature, low column density, and ordered magnetic field. Magnetically enhanced RAT alignment (MRAT) was found to be important for grain alignment due to the presence of a strong magnetic field and can induce perfect alignment even when grains contain small iron clusters. We estimated the mass fraction of aligned grains using a parametric model for the fraction of the grains at high-J attractors and found it to correlate weakly with the observed polarization degree. We observe a change in the polarization ratio, from p216µm/p850µm < 1 to p216µm/p850µm > 1 at Td ≳ 35 K, which suggests a change in the grain model from a composite to a separate population of carbon and silicate grains as implied by previous numerical modelling.

Funder

National Research Foundation of Korea

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3