Probing Cold Gas in a Massive, Compact Star-forming Galaxy at z = 6

Author:

Zavala Jorge A.ORCID,Casey Caitlin M.ORCID,Spilker JustinORCID,Tadaki Ken-ichiORCID,Tsujita Akiyoshi,Champagne JaclynORCID,Iono DaisukeORCID,Kohno KotaroORCID,Manning SinclaireORCID,Montaña AlfredoORCID

Abstract

Abstract Observations of low-order 12C16O transitions represent the most direct way to study galaxies’ cold molecular gas, the fuel of star formation. Here we present the first detection of CO(J = 2 → 1) in a galaxy lying on the main-sequence of star-forming galaxies at z > 6. Our target, G09-83808 at z = 6.03, has a short depletion timescale of τ dep ≈ 50 Myr and a relatively low gas fraction of M gas/M ≈ 0.30 that contrasts with those measured for lower-redshift main-sequence galaxies. We conclude that this galaxy is undergoing a starburst episode with a high star formation efficiency that might be the result of gas compression within its compact rotating disk. Its starburst-like nature is further supported by its high star formation rate surface density, thus favoring the use of the Kennicutt–Schmidt relation as a more precise diagnostic diagram. Without further significant gas accretion, this galaxy would become a compact, massive quiescent galaxy at z ∼ 5.5. In addition, we find that the calibration for estimating interstellar medium masses from dust continuum emission satisfactorily reproduces the gas mass derived from the CO(2 → 1) transition (within a factor of ∼2). This is in line with previous studies claiming a small redshift evolution in the gas-to-dust ratio of massive, metal-rich galaxies. In the absence of gravitational amplification, this detection would have required of order 1000 hr of observing time. The detection of cold molecular gas in unlensed star-forming galaxies at high redshifts is thus prohibitive with current facilities and requires a tenfold improvement in sensitivity, such as that envisaged for the Next-Generation Very Large Array .

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3