Tidal Truncation of Circumplanetary Disks Fails above a Critical Disk Aspect Ratio

Author:

Martin Rebecca G.ORCID,Armitage Philip J.ORCID,Lubow Stephen H.ORCID,Price Daniel J.ORCID

Abstract

Abstract We use numerical simulations of circumplanetary disks to determine the boundary between disks that are radially truncated by the tidal potential and those where gas escapes the Hill sphere. We consider a model problem, in which a coplanar circumplanetary disk is resupplied with gas at an injection radius smaller than the Hill radius. We evolve the disk using the Phantom smoothed particle hydrodynamics code until a steady state is reached. We find that the most significant dependence of the truncation boundary is on the disk aspect ratio H/R. Circumplanetary disks are efficiently truncated for H/R ≲ 0.2. For H/R ≃ 0.3, up to about half of the injected mass, depending on the injection radius, flows outward through the decretion disk and escapes. As expected from analytic arguments, the conditions (H/R and Shakura–Sunyaev α) required for tidal truncation are independent of planet mass. A simulation with larger α = 0.1 shows stronger outflow than one with α = 0.01, but the dependence on transport efficiency is less important than variations of H/R. Our results suggest two distinct classes of circumplanetary disks: tidally truncated thin disks with dust-poor outer regions, and thicker actively decreting disks with enhanced dust-to-gas ratios. Applying our results to the PDS 70 c system, we predict a largely truncated circumplanetary disk, but it is possible that enough mass escapes to support an outward flow of dust that could explain the observed disk size.

Funder

NASA ∣ SMD ∣ Astrophysics Division

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decretion disc size in Be/X-ray binaries depends upon the disc aspect ratio;Monthly Notices of the Royal Astronomical Society;2024-05-02

2. Disc precession in Be/X-ray binaries drives superorbital variations of outbursts and colour;Monthly Notices of the Royal Astronomical Society: Letters;2023-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3