Joint Modeling of Radial Velocities and Photometry with a Gaussian Process Framework

Author:

Tran Quang H.ORCID,Bedell MeganORCID,Foreman-Mackey DanielORCID,Luger RodrigoORCID

Abstract

Abstract Developments in the stability of modern spectrographs have led to extremely precise instrumental radial velocity (RV) measurements. For most stars, the detection limit of planetary companions with these instruments is expected to be dominated by astrophysical noise sources such as starspots. Correlated signals caused by rotationally modulated starspots can obscure or mimic the Doppler shifts induced by even the closest, most massive planets. This is especially true for young, magnetically active stars where stellar activity can cause fluctuation amplitudes of ≳0.1 mag in brightness and ≳100 m s−1 in RV semiamplitudes. Techniques that can mitigate these effects and increase our sensitivity to young planets are critical to improving our understanding of the evolution of planetary systems. Gaussian processes (GPs) have been successfully employed to model and constrain activity signals in individual cases. However, a principled approach of this technique, specifically for the joint modeling of photometry and RVs, has not yet been developed. In this work, we present a GP framework to simultaneously model stellar activity signals in photometry and RVs that can be used to investigate the relationship between both time series. Our method, inspired by the FF framework of Aigrain et al., models spot-driven activity signals as the linear combinations of two independent latent GPs and their time derivatives. We also simulate time series affected by starspots by extending the starry software to incorporate time evolution of stellar features. Using these synthetic data sets, we show that our method can predict spot-driven RV variations with greater accuracy than other GP approaches.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3