Comprehensive Gas Characterization of a z = 2.5 Protocluster: A Cluster Core Caught in the Beginning of Virialization?

Author:

Champagne Jaclyn B.ORCID,Casey Caitlin M.ORCID,Zavala Jorge A.ORCID,Cooray AsanthaORCID,Dannerbauer HelmutORCID,Fabian AndrewORCID,Hayward Christopher C.ORCID,Long Arianna S.ORCID,Spilker Justin S.ORCID

Abstract

Abstract In order to connect galaxy clusters to their progenitor protoclusters, we must constrain the star formation histories within their member galaxies and the timescale of virial collapse. In this paper we characterize the complex star-forming properties of a z = 2.5 protocluster in the COSMOS field using ALMA dust continuum and new Very Large Array CO (1–0) observations of two filaments associated with the structure, sometimes referred to as the “Hyperion” protocluster. We focus in particular on the protocluster “core,” which has previously been suggested as the highest-redshift bona fide galaxy cluster traced by extended X-ray emission in a stacked Chandra/XMM image. We reanalyze these data and refute these claims, finding that at least 40% ± 17% of extended X-ray sources of similar luminosity and size at this redshift arise instead from inverse Compton scattering off recently extinguished radio galaxies rather than intracluster medium. Using ancillary COSMOS data, we also constrain the spectral energy distributions of the two filaments’ eight constituent galaxies from the rest-frame UV to radio. We do not find evidence for enhanced star formation efficiency in the core and conclude that the constituent galaxies are already massive (M ≈ 1011 M ), with molecular gas reservoirs >1010 M that will be depleted within 200–400 Myr. Finally, we calculate the halo mass of the nested core at z = 2.5 and conclude that it will collapse into a cluster of (2–9) × 1014 M , comparable to the size of the Coma Cluster at z = 0 and accounting for at least 50% of the total estimated halo mass of the extended “Hyperion” structure.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3