The Launching of Cold Clouds by Galaxy Outflows. IV. Cosmic-Ray-driven Acceleration

Author:

Brüggen MarcusORCID,Scannapieco EvanORCID

Abstract

Abstract We carry out a suite of simulations of the evolution of cosmic-ray (CR) driven, radiatively cooled cold clouds embedded in hot material, as found in galactic outflows. In such interactions, CRs stream toward the cloud at the Alfvén speed, which decreases dramatically at the cloud boundary, leading to a bottleneck in which pressure builds up in front of the cloud. At the same time, CRs stream along the sides of the cloud, forming a boundary layer where large filaments develop. Shear in this boundary layer is the primary mode of cloud destruction, which is relatively slow in all cases, but slowest in the cases with the lowest Alfvén speeds. Thus, the CR pressure in the bottleneck region has sufficient time to accelerate the cold clouds efficiently. Furthermore, radiative cooling has relatively little impact on these interactions. Our simulations are two-dimensional and limited by a simplified treatment of CR dynamics, the neglect of CR heating, and an idealized magnetic field geometry. Nevertheless, our results suggest that CRs, when acting as the primary source of momentum input, are capable of accelerating clouds to velocities comparable to those observed in galaxy outflows.

Funder

NSF

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theory and Observation of Winds from Star-Forming Galaxies;Annual Review of Astronomy and Astrophysics;2024-09-13

2. The imprint of magnetic fields on absorption spectra from circumgalactic wind-cloud systems;Astronomy & Astrophysics;2024-09

3. AGN-driven outflows in clumpy media: multiphase structure and scaling relations;Monthly Notices of the Royal Astronomical Society;2024-07-26

4. Taming the TuRMoiL: The Temperature Dependence of Turbulence in Cloud–Wind Interactions;The Astrophysical Journal;2024-05-01

5. The survival and entrainment of molecules and dust in galactic winds;Monthly Notices of the Royal Astronomical Society;2024-04-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3