Abstract
Abstract
Recent observations suggest late accretion, which is generally nonaxisymmetric, onto protoplanetary disks. We investigated nonaxisymmetric late accretion considering the effects of magnetic fields. Our model assumes a cloudlet encounter event at a few hundred astronomical units scale, where a magnetized gas clump (cloudlet) encounters a protoplanetary disk. We studied how the cloudlet size and the magnetic field strength affect the rotational velocity profile in the disk after the cloudlet encounter. The results show that a magnetic field can either decelerate or accelerate the rotational motion of the cloudlet material, primarily depending on the relative size of the cloudlet to the disk thickness. When the cloudlet size is comparable to or smaller than the disk thickness, magnetic fields only decelerate the rotation of the colliding cloudlet material. However, if the cloudlet size is larger than the disk thickness, the colliding cloudlet material can be super-Keplerian as a result of magnetic acceleration. We found that the vertical velocity shear of the cloudlet produces a magnetic tension force that increases the rotational velocity. The acceleration mechanism operates when the initial plasma β is β ≲ 2 × 101. Our study shows that magnetic fields modify the properties of spirals formed by tidal effects. These findings may be important for interpreting observations of late accretion.
Funder
MEXT ∣ Japan Society for the Promotion of Science
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献