Hyperfine excitation of NH and ND by molecular hydrogen

Author:

Pirlot Jankowiak PaulORCID,Lique FrançoisORCID,Goicoechea Javier R.ORCID

Abstract

The NH and ND radicals are of key importance in the comprehension of nitrogen chemistry and the enhancement of deuterated molecules in the interstellar medium. Observations by space telescopes yield spectra that can resolve the fine and hyperfine structure of these radicals, a consequence of the electronic and magnetic interactions of nitrogen, hydrogen, and deuterium nuclei. Accurate rate coefficients, induced by collisions with H2, are required to interpret spectra of these radicals. We report the first rate coefficients for fine and hyperfine transitions of NH and ND in collision with both ortho- and para-H2. Based on a recent four-dimensional potential energy surface, fine-structure resolved cross sections and rate coefficients are computed with the time-independent close-coupling method over a temperature range of 5–300 K. Our calculations include the first 25 energy levels of NH and ND. Hyperfine resolved cross sections and rate coefficients are determined using the infinite-order sudden (IOS) approximation between 5 and 200 K for NH and 100 K for ND. We consider the first 71 and 105 energy levels of NH and ND, respectively. General propensity rules are discussed. We found a significant isotopic substitution effect in the rate coefficients. In addition, the rate coefficients for collisions with H2 are larger than those with He by a factor of up to 5, leading to lower critical densities for collisional excitation with H2 than He. The impact of the new set of collisional data has been investigated in simple radiative transfer models of the NH emission seen toward the Orion Bar and the ejecta of the η Carinae binary star. We observed significant differences by a factor of 5 between the presently determined column densities for NH compared to those from the literature using He as a collider.

Funder

ERC COLLEXISM

Spanish MICI

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3