Age Spreads and Systematics in λ Orionis with Gaia DR2 and the SPOTS Tracks

Author:

Cao LyraORCID,Pinsonneault Marc H.ORCID,Hillenbrand Lynne A.,Kuhn Michael A.ORCID

Abstract

Abstract In this paper we investigate the robustness of age measurements, age spreads, and stellar models in young pre-main-sequence stars. For this effort, we study a young cluster, λ Orionis, within the Orion star-forming complex. We use Gaia data to derive a sample of 357 targets with spectroscopic temperatures from spectral types or from the automated spectroscopic pipeline in APOGEE Net. After accounting for systematic offsets between the spectral type and APOGEE temperature systems, the derived properties of stars on both systems are consistent. The complex interstellar medium, with variable local extinction, motivates a star-by-star dereddening approach. We use a spectral energy distribution fitting method calibrated on open clusters for the Class III stars. For the Class II population, we use a Gaia G-RP dereddening method, minimizing systematics from disks, accretion, and other physics associated with youth. The cluster age is systematically different in models incorporating the structural impact of starspots or magnetic fields than in nonmagnetic models. Our mean ages range from 2–3 Myr (nonmagnetic models) to 3.9 ± 0.2 Myr in the SPOTS model (f = 0.34). We find that star-by-star dereddening methods distinguishing between pre-main-sequence classes provide a smaller age spread than techniques using a uniform extinction, and we infer a minimum age spread of 0.19 dex and a typical age spread of 0.35 dex after modeling age distributions convolved with observed errors. This suggests that the λ Ori cluster may have a long star formation timescale and that spotted stellar models significantly change age estimates for young clusters.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3