Identifying reliable periods in 2MASS J09213414–5939068, IGR J16167–4957, and V667 Pup

Author:

Joshi ArtiORCID

Abstract

Detailed timing analyses of three cataclysmic variables, namely 2MASS J09213414−5939068, IGR J16167−4957, and V667 Pup are carried out using the long-baseline and high-cadence optical photometric data from the Transiting Exoplanet Survey Satellite (TESS). Periods of 908.12 ± 0.05 s and 990.10 ± 0.06 s are observed in the optical variation of 2MASS J09213414−5939068 that were not found in earlier studies and appear to be probable spin and beat periods of the system, respectively. The presence of multiple periods at spin, beat, and other sidebands indicates that 2MASS J09213414−5939068 likely belongs to an intermediate polar class of magnetic cataclysmic variables that seems to be accreted via a disc-overflow mechanism. Clear evidence of a period of 582.45 ± 0.04 s is found during the TESS observations of IGR J16167−4957, which can be interpreted as the spin period of the system. Strong modulation at this frequency supports its classification as an intermediate polar, where accretion may primarily be governed by a disc. The dominance of the spin pulse unveils the disc-fed dominance accretion in V667 Pup, but the detection of the previously unknown beat period of 525.77 ± 0.03 s suggests that a portion of the material is also accreted through a stream. Moreover, the double-peaked structure observed in the optical spin pulse profile of V667 Pup suggests the possibility of a two-pole accretion geometry, where each pole accretes at a different rate and is separated by 180°.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3