Dynamical Splitting of Spot-producing Magnetic Rings in a Nonlinear Shallow-water Model

Author:

Dikpati MausumiORCID,Norton Aimee A.ORCID,McIntosh Scott W.ORCID,Gilman Peter A.ORCID

Abstract

Abstract We explore the fundamental physics of narrow toroidal rings during their nonlinear magnetohydrodynamic evolution at tachocline depths. Using a shallow-water model, we simulate the nonlinear evolution of spot-producing toroidal rings of 6° latitudinal width and a peak field of 15 kG. We find that the rings split; the split time depends on the latitude of each ring. Ring splitting occurs fastest, within a few weeks, at latitudes 20°–25°. Rossby waves work as perturbations to drive the instability of spot-producing toroidal rings; the ring split is caused by the “mixed stress” or cross-correlations of perturbation velocities and magnetic fields, which carry magnetic energy and flux from the ring peak to its shoulders, leading to the ring split. The two split rings migrate away from each other, the high-latitude counterpart slipping poleward faster due to migrating mixed stress and magnetic curvature stress. Broader toroidal bands do not split. Much stronger rings, despite being narrow, do not split due to rigidity from stronger magnetic fields within the ring. Magnetogram analysis indicates the emergence of active regions sometimes at the same longitudes but separated in latitude by 20° or more, which could be evidence of active regions emerging from split rings, which consistently contribute to observed high-latitude excursions of butterfly wings during the ascending, peak, and descending phases of a solar cycle. Observational studies in the future can determine how often new spots are found at higher latitudes than their lower-latitude counterparts and how the combinations influence solar eruptions and space weather events.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3