The magnetic non-hydrostatic shallow-water model

Author:

Dritschel David G.ORCID,Tobias Steven M.ORCID

Abstract

We consider the dynamics of a set of reduced equations describing the evolution of a magnetised, rotating stably stratified fluid layer, atop a stagnant dense, perfectly conducting layer. We consider two closely related models. In the first, the layer has, above it, relatively light fluid where the magnetic pressure is much larger than the gas pressure, and the magnetic field is largely force-free. In the second model, the magnetic field is constrained to lie within the dynamical layer by the implementation of a model diffusion operator for the magnetic field. The model derivation proceeds by assuming that the horizontal velocity and the horizontal magnetic field are independent of the vertical coordinate, whilst the vertical components in the layer have a linear dependence on height. The full system comprises evolution equations for the magnetic field, horizontal velocity and height field together with a linear elliptic equation for the vertically integrated non-hydrostatic pressure. In the magneto-hydrostatic limit, these equations simplify to equations of shallow-water type. Numerical solutions for both models are provided for the fiducial case of a Gaussian vortex interacting with a magnetic field. The solutions are shown to differ negligibly. We investigate how the interaction of the vortex changes in response to the magnetic Reynolds number ${Rm}$ , the Rossby deformation radius $L_D$ , and a Coriolis buoyancy frequency ratio $f/N$ measuring the significance of non-hydrostatic effects. The magneto-hydrostatic limit corresponds to $f/N\to 0$ .

Funder

H2020 European Research Council

Leverhulme Trust

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3