Self-gravitating Equilibria of Non-minimally Coupled Dark Matter Halos

Author:

Gandolfi GiovanniORCID,Lapi AndreaORCID,Liberati StefanoORCID

Abstract

Abstract We investigate self-gravitating equilibria of halos constituted by dark matter (DM) non-minimally coupled to gravity. In particular, we consider a theoretically motivated non-minimal coupling that may arise when the averaging/coherence length L associated with the fluid description of the DM collective behavior is comparable to the local curvature scale. In the Newtonian limit, such a non-minimal coupling amounts to a modification of the Poisson equation by a term L 22 ρ proportional to the Laplacian of the DM density ρ itself. We further adopt a general power-law equation of state pρ Γ r α relating the DM dynamical pressure p to density ρ and radius r, as expected for phase-space density stratification during the gravitational assembly of halos in a cosmological context. We confirm previous findings that, in the absence of non-minimal coupling, the resulting density ρ(r) features a steep central cusp and an overall shape mirroring the outcomes of N-body simulations in the standard ΛCDM cosmology, as described by the classic Navarro–Frenk–White or Einasto profiles. Most importantly, we find that the non-minimal coupling causes the density distribution to develop an inner core and a shape that closely follows the Burkert profile out to several core scale radii. In fact, we highlight that the resulting mass distributions can fit, with an accuracy comparable to Burkert’s one, the coadded rotation curves of dwarf, DM-dominated galaxies. Finally, we show that non-minimally coupled DM halos are consistent with the observed scaling relation between the core radius r 0 and core density ρ 0, in terms of a universal core surface density ρ 0 × r 0 among different galaxies.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3