Abstract
AbstractIn this study, we investigate the potential existence of a non-minimal coupling between dark matter and gravity using a compilation of galaxy clusters. We focus on the disformal scenario of a non-minimal model with an associated coupling length L. Within the Newtonian approximation, this model introduces a modification to the Poisson equation, characterized by a term proportional to $$L^2 \nabla ^2 \rho $$
L
2
∇
2
ρ
, where $$\rho $$
ρ
represents the density of the DM field. We have tested the model by examining strong and weak gravitational lensing data available for a selection of 19 high-mass galaxy clusters observed by the CLASH survey. We have employed a Markov Chain Monte Carlo code to explore the parameter space, and two different statistical approaches to analyse our results: a standard marginalisation and a profile distribution method. Notably, the profile distribution analysis helps out to bypass some volume-effects in the posterior distribution, and reveals lower Navarro–Frenk–White concentrations and masses in the non-minimal coupling model compared to general relativity case. We also found a nearly perfect correlation between the coupling constant L and the standard Navarro–Frenk–White scale parameter $$r_s$$
r
s
, hinting at a compelling link between these two lengths.
Funder
Narodowe Centrum Nauki
Ministerio de Ciencia e Innovació
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献