Direct Constraints on the Extremely Metal-poor Massive Stars Underlying Nebular C iv Emission from Ultra-deep HST/COS Ultraviolet Spectroscopy

Author:

Senchyna PeterORCID,Stark Daniel P.,Charlot StéphaneORCID,Plat Adele,Chevallard JacopoORCID,Chen ZuyiORCID,Jones TuckerORCID,Sanders Ryan L.ORCID,Rudie Gwen C.ORCID,Cooper Thomas J.ORCID,Bruzual GustavoORCID

Abstract

Abstract Metal-poor nearby galaxies hosting massive stars have a fundamental role to play in our understanding of both high-redshift galaxies and low-metallicity stellar populations. But while much attention has been focused on their bright nebular gas emission, the massive stars that power it remain challenging to constrain. Here we present exceptionally deep Hubble Space Telescope ultraviolet spectra targeting six local (z < 0.02) galaxies that power strong nebular C iv emission approaching that encountered at z > 6. We find that the strength and spectral profile of the nebular C iv in these new spectra follow a sequence evocative of resonant scattering models, indicating that the hot circumgalactic medium likely plays a key role in regulating C iv escape locally. We constrain the metallicity of the massive stars in each galaxy by fitting the forest of photospheric absorption lines, reporting measurements driven by iron that lie uniformly below 10% solar. Comparison with the gas-phase oxygen abundances reveals evidence for enhancement in O/Fe 2–4 times above solar across the sample, robust to assumptions about the absolute gas-phase metallicity scale. This supports the idea that these local systems are more chemically similar to their primordial high-redshift counterparts than to the bulk of nearby galaxies. Finally, we find significant tension between the strong stellar wind profiles observed and our population synthesis models constrained by the photospheric forest in our highest-quality spectra. This reinforces the need for caution in interpreting wind lines in isolation at high redshift, but also suggests a unique path toward validating fundamental massive star physics at extremely low metallicity with integrated ultraviolet spectra.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3