Dwarf–Dwarf Interactions Can Both Trigger and Quench Star Formation

Author:

Kado-Fong ErinORCID,Robinson Azia,Nyland KristinaORCID,Greene Jenny E.ORCID,Suess Katherine A.ORCID,Stierwalt SabrinaORCID,Beaton RachaelORCID

Abstract

Abstract It is exceedingly rare to find quiescent low-mass galaxies in the field at low redshift. UGC 5205 is an example of such a quenched field dwarf (M ∼ 3 × 108 M ). Despite a wealth of cold gas (M HI ∼ 3.5 × 108 M ) and UV emission that indicates significant star formation in the past few hundred megayears, there is no detection of Hα emission—star formation in the last ∼10 Myr—across the face of the galaxy. Meanwhile, the near equal-mass companion of UGC 5205, PGC 027864, is starbursting (which has an Hα equivalent width > 1000 Å). In this work, we present new Karl G. Jansky Very Large Array 21 cm line observations of UGC 5205, showing that the lack of star formation is caused by an absence of H i in the main body of the galaxy. The H i of UGC 5205 is highly disturbed; the bulk of the H i resides in several-kiloparsec–long tails, while the H i of PGC 027864 is dominated by ordered rotation. We model the stellar populations of UGC 5205 to show that, as indicated by the UV and Hα emission, the galaxy underwent a coordinated quenching event ∼100–300 Myr ago. The asymmetry of outcomes for UGC 5205 and PGC 027864 demonstrate that major mergers can both quench and trigger star formation in dwarfs. However, because the gas remains bound to the system, we suggest that such mergers only temporarily quench star formation. We estimate a total quenched time of ∼560 Myr for UGC 5205, consistent with established upper limits on the quenched fraction of a few percent for dwarfs in the field.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3