Modeling the High-resolution Emission Spectra of Clear and Cloudy Nontransiting Hot Jupiters

Author:

Malsky IsaacORCID,Rauscher EmilyORCID,Kempton Eliza M.-R.ORCID,Roman MichaelORCID,Long DerylORCID,Harada Caleb K.ORCID

Abstract

Abstract The advent of high-resolution spectroscopy (R ≳ 25,000) as a method for characterization of exoplanet atmospheres has expanded our capability to study nontransiting planets, vastly increasing the number of planets accessible for observation. Many of the most favorable targets for atmospheric characterization are hot Jupiters, where we expect large spatial variation in physical conditions such as temperature, wind speed, and cloud coverage, making viewing geometry important. Three-dimensional models have generally simulated observational properties of hot Jupiters assuming edge-on viewing, which can be compared to observations of transiting planets, but neglected the large fraction of planets without nearly edge-on orbits. As the first investigation of how orbital inclination manifests in high-resolution emission spectra from three-dimensional models, we use a general circulation model to simulate the atmospheric structure of Upsilon Andromedae b, a typical nontransiting hot Jupiter with high observational interest, due the brightness of its host star. We compare models with and without clouds, and find that cloud coverage intensifies spatial variations by making colder regions dimmer and relatedly enhancing emission from the clear, hotter regions. This increases both the net Doppler shifts and the variation of the continuum flux amplitude over the course of the planet’s orbit. In order to accurately capture scattering from clouds, we implement a generalized two-stream radiative transfer routine for inhomogeneous multiple scattering atmospheres. As orbital inclination decreases, four key features of the high-resolution emission spectra also decrease in both the clear and cloudy models: (1) the average continuum flux level, (2) the amplitude of the variation in continuum with orbital phase, (3) net Doppler shifts of spectral lines, and (4) Doppler broadening in the spectra. Models capable of treating inhomogeneous cloud coverage and different viewing geometries are critical in understanding results from high-resolution emission spectra, enabling an additional avenue to investigate these extreme atmospheres.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3