Testing General Relativity with Juno at Jupiter

Author:

Durante DanieleORCID,Cappuccio P.ORCID,di Stefano I.ORCID,Zannoni M.ORCID,Gomez Casajus L.ORCID,Lari G.ORCID,Falletta M.,Buccino D. R.ORCID,Iess L.ORCID,Park R. S.ORCID,Bolton S. J.ORCID

Abstract

Abstract The Juno spacecraft has been orbiting Jupiter since 2016 July to deepen our comprehension of the solar system by studying the gas giant. The radio science experiment enables the determination of Jupiter’s gravitational field, thus shedding light on its interior structure. The experiment relies on determining the orbit of the spacecraft during its pericenter passages. Previous gravity data analyses assumed the correctness of the general theory of relativity, which was used for trajectory integration and radio signal propagation modeling. In this work, we aim to test general relativity within the unique context of a spacecraft orbiting Jupiter, by employing the parameterized post-Newtonian (PPN) formalism, an established framework for comparing various gravitational theories. Within this framework, we focus our attention toward the PPN parameters γ and β, which offer insights into the curvature of spacetime and the nonlinearity of gravitational effects, respectively. Additionally, we extend our investigation to the Lense–Thirring effect, which models the dragging of spacetime induced by a rotating mass. By measuring the relativistic frequency shift on Doppler observables caused by Jupiter during Juno’s perijove passes, we estimate γ = 1 + (1.5 ± 4.9) × 10−3, consistent with the general theory of relativity. Our estimated γ is primarily influenced by its effect on light-time computation, with a negligible contribution from spacecraft dynamics. Furthermore, we also present a modest level of accuracy for the β parameter, reflecting the minimal dynamical perturbation on Juno from general relativity. This also applies to the Lense–Thirring effect, whose signal is too small to be confidently resolved.

Funder

Agenzia Spaziale Italiana

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3