High-energy Neutrino Emission from Espresso-reaccelerated Ions in Jets of Active Galactic Nuclei

Author:

Mbarek RostomORCID,Caprioli DamianoORCID,Murase KohtaORCID

Abstract

Abstract We present a bottom-up calculation of the flux of ultrahigh-energy cosmic rays (UHECRs) and high-energy neutrinos produced by powerful jets of active galactic nuclei (AGNs). By propagating test particles in 3D relativistic magnetohydrodynamic jet simulations, including a Monte Carlo treatment of sub-grid pitch-angle scattering and attenuation losses due to realistic photon fields, we study the spectrum and composition of the accelerated UHECRs and estimate the amount of neutrinos produced in such sources. We find that UHECRs may not be significantly affected by photodisintegration in AGN jets where the espresso mechanism efficiently accelerates particles, consistent with Auger’s results that favor a heavy composition at the highest energies. Moreover, we present estimates and upper bounds for the flux of high-energy neutrinos expected from AGN jets. In particular, we find that (i) source neutrinos may account for a sizable fraction, or even dominate, the expected flux of cosmogenic neutrinos; (ii) neutrinos from the β-decay of secondary neutrons produced in nucleus photodisintegration end up in the teraelectronvolt to petaelectronvolt band observed by IceCube, but can hardly account for the observed flux; (iii) UHECRs accelerated via the espresso mechanism lead to nearly isotropic neutrino emission, which suggests that nearby radio galaxies may be more promising as potential sources. We discuss our results in light of multimessenger astronomy and current/future neutrino experiments.

Funder

National Science Foundation

KAKENHI

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3