Uranium Abundances and Ages of r-process Enhanced Stars with Novel U ii Lines*

Author:

Shah Shivani P.ORCID,Ezzeddine RanaORCID,Ji Alexander P.ORCID,Hansen Terese T.ORCID,Roederer Ian U.ORCID,Catelan MárcioORCID,Hackshaw ZoeORCID,Holmbeck Erika M.ORCID,Beers Timothy C.ORCID,Surman RebeccaORCID

Abstract

Abstract The ages of the oldest stars shed light on the birth, chemical enrichment, and chemical evolution of the universe. Nucleocosmochronometry provides an avenue to determining the ages of these stars independent from stellar-evolution models. The uranium abundance, which can be determined for metal-poor r-process enhanced (RPE) stars, has been known to constitute one of the most robust chronometers known. So far, U abundance determination has used a single U ii line at λ3859 Å. Consequently, U abundance has been reliably determined for only five RPE stars. Here, we present the first homogeneous U abundance analysis of four RPE stars using two novel U ii lines at λ4050 Å and λ4090 Å, in addition to the canonical λ3859 Å line. We find that the U ii lines at λ4050 Å and λ4090 Å are reliable and render U abundances in agreement with the λ3859 U abundance, for all of the stars. We, thus, determine revised U abundances for RPE stars, 2MASS J09544277+5246414, RAVE J203843.2–002333, HE 1523–0901, and CS 31082–001, using multiple U ii lines. We also provide nucleocosmochronometric ages of these stars based on the newly derived U, Th, and Eu abundances. The results of this study open up a new avenue to reliably and homogeneously determine U abundance for a significantly larger number of RPE stars. This will, in turn, enable robust constraints on the nucleocosmochronometric ages of RPE stars, which can be applied to understand the chemical enrichment and evolution in the early universe, especially of r-process elements.

Funder

National Science Foundation

Joint Institute for Nuclear Astrophysics - Center for the Evolution of the Elements

Space Telescope Science Institute

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3