3D Radiation Hydrodynamic Simulations of Gravitational Instability in AGN Accretion Disks: Effects of Radiation Pressure

Author:

Chen 陈 Yi-Xian 逸贤ORCID,Jiang 姜 Yan-Fei 燕飞ORCID,Goodman JeremyORCID,Ostriker Eve C.ORCID

Abstract

Abstract We perform 3D radiation hydrodynamic local shearing-box simulations to study the outcome of gravitational instability (GI) in optically thick active galactic nuclei (AGNs) accretion disks. GI develops when the Toomre parameter Q T ≲ 1, and may lead to turbulent heating that balances radiative cooling. However, when radiative cooling is too efficient, the disk may undergo runaway gravitational fragmentation. In the fully gas-pressure-dominated case, we confirm the classical result that such a thermal balance holds when the Shakura–Sunyaev viscosity parameter (α) due to the gravitationally driven turbulence is ≲0.2, corresponding to dimensionless cooling times Ωt cool ≳ 5. As the fraction of support by radiation pressure increases, the disk becomes more prone to fragmentation, with a reduced (increased) critical value of αt cool). The effect is already significant when the radiation pressure exceeds 10% of the gas pressure, while fully radiation-pressure-dominated disks fragment at t cool ≲ 50 Ω−1. The latter translates to a maximum turbulence level α ≲ 0.02, comparable to that generated by magnetorotational instability. Our results suggest that gravitationally unstable (Q T ∼ 1) outer regions of AGN disks with significant radiation pressure (likely for high/near-Eddington accretion rates) should always fragment into stars, and perhaps black holes.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chaotic Type I migration in turbulent discs;Monthly Notices of the Royal Astronomical Society: Letters;2023-11-13

2. Metal enrichment due to embedded stars in AGN discs;Monthly Notices of the Royal Astronomical Society;2023-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3