Abstract
Abstract
We perform 3D radiation hydrodynamic local shearing-box simulations to study the outcome of gravitational instability (GI) in optically thick active galactic nuclei (AGNs) accretion disks. GI develops when the Toomre parameter Q
T
≲ 1, and may lead to turbulent heating that balances radiative cooling. However, when radiative cooling is too efficient, the disk may undergo runaway gravitational fragmentation. In the fully gas-pressure-dominated case, we confirm the classical result that such a thermal balance holds when the Shakura–Sunyaev viscosity parameter (α) due to the gravitationally driven turbulence is ≲0.2, corresponding to dimensionless cooling times Ωt
cool ≳ 5. As the fraction of support by radiation pressure increases, the disk becomes more prone to fragmentation, with a reduced (increased) critical value of α (Ωt
cool). The effect is already significant when the radiation pressure exceeds 10% of the gas pressure, while fully radiation-pressure-dominated disks fragment at t
cool ≲ 50 Ω−1. The latter translates to a maximum turbulence level α ≲ 0.02, comparable to that generated by magnetorotational instability. Our results suggest that gravitationally unstable (Q
T
∼ 1) outer regions of AGN disks with significant radiation pressure (likely for high/near-Eddington accretion rates) should always fragment into stars, and perhaps black holes.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献