Numerical Relativity Simulations of the Neutron Star Merger GW170817: Long-term Remnant Evolutions, Winds, Remnant Disks, and Nucleosynthesis

Author:

Nedora Vsevolod,Bernuzzi SebastianoORCID,Radice DavidORCID,Daszuta Boris,Endrizzi Andrea,Perego AlbinoORCID,Prakash Aviral,Safarzadeh MohammadtaherORCID,Schianchi Federico,Logoteta Domenico

Abstract

Abstract We present a systematic numerical relativity study of the dynamical ejecta, winds, and nucleosynthesis in neutron star (NS) merger remnants. Binaries with the chirp mass compatible with GW170817, different mass ratios, and five microphysical equations of state (EOSs) are simulated with an approximate neutrino transport and a subgrid model for magnetohydrodynamic turbulence up to 100 ms postmerger. Spiral density waves propagating from the NS remnant to the disk trigger a wind with mass flux ∼0.1–0.5 M s−1, which persists for the entire simulation as long as the remnant does not collapse to a black hole. This wind has average electron fraction ≳0.3 and average velocity ∼0.1–0.17 c and thus is a site for the production of weak r-process elements (mass number A < 195). Disks around long-lived remnants have masses ∼0.1–0.2 M , temperatures peaking at ≲10 MeV near the inner edge, and a characteristic double-peak distribution in entropy resulting from shocks propagating through the disk. The dynamical and spiral-wave ejecta computed in our targeted simulations are not compatible with those inferred from AT2017gfo using two-components kilonova models. Rather, they indicate that multicomponent kilonova models including disk winds are necessary to interpret AT2017gfo. The nucleosynthesis in the combined dynamical ejecta and spiral-wave wind in the long-lived mergers of comparable mass robustly accounts for all the r-process peaks, from mass number ∼75 to actinides in terms of solar abundances. Total abundances are weakly dependent on the EOS, while the mass ratio affects the production of first-peak elements.

Funder

ERC

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3