Bayesian inference of multi-messenger astrophysical data: Joint and coherent inference of gravitational waves and kilonovae

Author:

Breschi Matteo,Gamba Rossella,Carullo Gregorio,Godzieba Daniel,Bernuzzi SebastianoORCID,Perego Albino,Radice DavidORCID

Abstract

Context. Multi-messenger observations of binary neutron star mergers can provide information on the neutron star’s equation of state (EOS) above the nuclear saturation density by directly constraining the mass-radius diagram. Aims. We present a Bayesian framework for joint and coherent analyses of multi-messenger binary neutron star signals. As a first application, we analyze the gravitational-wave GW170817 and the kilonova (kN) AT2017gfo data. These results are then combined with the most recent X-ray pulsar analyses of PSR J0030+0451 and PSR J0740+6620 to obtain new EOS constraints. Methods. We extend the bajes infrastructure with a joint likelihood for multiple datasets, support for various semi-analytical kN models, and numerical-relativity (NR)-informed relations for the mass ejecta, as well as a technique to include and marginalize over modeling uncertainties. The analysis of GW170817 used the TEOBResumS effective-one-body waveform template to model the gravitational-wave signal. The analysis of AT2017gfo used a baseline multicomponent spherically symmetric model for the kN light curves. Various constraints on the mass-radius diagram and neutron star properties were then obtained by resampling over a set of ten million parameterized EOSs, which was built under minimal assumptions (general relativity and causality). Results. We find that a joint and coherent approach improves the inference of the extrinsic parameters (distance) and, among the intrinsic parameters, the mass ratio. The inclusion of NR-informed relations marks a strong improvement over the case in which an agnostic prior is used on the intrinsic parameters. Comparing Bayes factors, we find that the two observations are better explained by the common source hypothesis only by assuming NR-informed relations. These relations break some of the degeneracies in the employed kN models. The EOS inference folding-in PSR J0952-0607 minimum-maximum mass, PSR J0030+0451 and PSR J0740+6620 data constrains, among other quantities, the neutron star radius to R1.4TOV = 12.30− 0.56+ 0.81 km(R1.4TOV = 13.20− 0.90+ 0.91 km) and the maximum mass to MmaxTOV = 2.28− 0.17+ 0.25M(MmaxTOV = 2.32− 0.19+ 0.30M), where the ST+PDT (PDT-U) analysis of Vinciguerra et al. (2024, ApJ, 961, 62) for PSR J0030+0451 was employed. Hence, the systematics on the PSR J0030+0451 data reduction currently dominate the mass-radius diagram constraints. Conclusions. We conclude that bajes delivers robust analyses in line with other state-of-the-art results in the literature. Strong EOS constraints are provided by pulsars observations, albeit with large systematics in some cases. Current gravitational-wave constraints are compatible with pulsar constraints and can further improve the latter.

Funder

European Research Council

Deutsche Forschungsgemeinschaft

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3