Climate Outcomes of Earth-similar Worlds as a Function of Obliquity and Rotation Rate

Author:

He FengORCID,Merrelli AronneORCID,L’Ecuyer Tristan S.ORCID,Turnbull Margaret C.ORCID

Abstract

Abstract A set of simulations with a 3D global climate model are performed to investigate the roles of obliquity and rotation period in the habitability of Earthlike exoplanets. The simulations cover the obliquity–rotation parameter space, from 0° to 90° in obliquity and 1–128 days in rotation period. The simulated global mean temperatures are warmest at 45° obliquity with fast rotations, due to the modification of the greenhouse effect from the spatial redistribution of clouds and water vapor. The slow-moving insolation–cloud mechanism, previously found in simulations with slow rotations and zero obliquity, also produces a cooling trend from intermediate obliquity to high obliquity, with the coldest climate occurring at 90° obliquity for all rotation periods. At low obliquities and fast rotation, persistent snow and sea ice can form, producing cooler temperatures. A Climate Habitability metric is defined, based on temperature and precipitation, which compares well with observations when applied to a simulation using Earth’s obliquity and rotation. Over a wider range of obliquity and rotation period, the Climate Habitability ranges from 10% to 70% of the terrestrial area. Overall, the simulated global mean surface temperature shows a much larger spread across the range of simulated rotation periods at 45° obliquity compared to 0° obliquity. Therefore, we conclude that 3D exoplanet simulations using intermediate obliquities (e.g., 45°) instead of 0° will reveal a wider range of possible climate conditions for specific orbital configurations. In addition, Earth’s climate habitability can increase by 25% if the obliquity increases from 23.°5 to 45°.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Higher water loss on Earth-like exoplanets in eccentric orbits;Monthly Notices of the Royal Astronomical Society;2023-06-16

2. Sporadic Spin-orbit Variations in Compact Multiplanet Systems and Their Influence on Exoplanet Climate;The Astrophysical Journal Letters;2023-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3