Higher water loss on Earth-like exoplanets in eccentric orbits

Author:

Liu Binghan1,Marsh Daniel R12,Walsh Catherine1,Cooke Greg1ORCID

Affiliation:

1. Department of Physics and Astronomy, University of Leeds , Woodhouse Lane, Leeds LS2 9JT, UK

2. National Center for Atmospheric Research , Boulder, CO 80301, USA

Abstract

ABSTRACT The climate of a terrestrial exoplanet is controlled by the type of host star, the orbital configuration, and the characteristics of the atmosphere and the surface. Many rocky exoplanets have higher eccentricities than those in the Solar system, and about 18 per cent of planets with masses <10 M⊕ have e > 0.1. Underexplored are the implications of such high eccentricities on the atmosphere, climate, and potential habitability on such planets. We use WACCM6, a state-of-the-art fully coupled Earth-system model, to simulate the climates of two Earth-like planets: one in a circular orbit (e = 0), and one in an eccentric orbit (e = 0.4) with the same mean insolation. We quantify the effects of eccentricity on the atmospheric water abundance and loss given the importance of liquid water for habitability. The asymmetric temperature response in the eccentric orbit results in a water vapour mixing ratio in the stratosphere (>20 ppmv) that is approximately five times greater than that for circular orbit (∼4 ppmv). This leads to at most ∼3 times increases in both the atmospheric hydrogen loss rate and the ocean loss rate compared with the circular case. Using the Planetary Spectrum Generator, we simulate the idealized transmission spectra for both cases. We find that the water absorption features are stronger at all wavelengths for the e = 0.4 spectrum than for the circular case. Hence, highly eccentric Earth-like exoplanets may be prime targets for future transmission spectroscopy observations to confirm, or otherwise, the presence of atmospheric water vapour.

Funder

University of Leeds

Science and Technology Facilities Council

UK Research and Innovation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3