Illuminating the Dark Side of Cosmic Star Formation. II. A Second Date with RS-NIRdark Galaxies in COSMOS

Author:

Behiri MeriemORCID,Talia MargheritaORCID,Cimatti AndreaORCID,Lapi AndreaORCID,Massardi MarcellaORCID,Enia AndreaORCID,Vignali CristianORCID,Bethermin MatthieuORCID,Faisst AndreasORCID,Gentile FabrizioORCID,Giulietti MarikaORCID,Gruppioni CarlottaORCID,Pozzi FrancescaORCID,Smolçić VernesaORCID,Zamorani GianniORCID

Abstract

Abstract About 12 billion years ago, the Universe was first experiencing light again after the dark ages, and galaxies filled the environment with stars, metals, and dust. How efficient was this process? How fast did these primordial galaxies form stars and dust? We can answer these questions by tracing the star formation rate density (SFRD) back to its widely unknown high-redshift tail, traditionally observed in the near-infrared (NIR), optical, and UV bands. Thus, objects with a large amount of dust were missing. We aim to fill this knowledge gap by studying radio-selected NIR-dark (RS-NIRdark) sources, i.e., sources not having a counterpart at UV-to-NIR wavelengths. We widen the sample of Talia et al. from 197 to 272 objects in the Cosmic Evolution Survey (COSMOS) field, including also photometrically contaminated sources, which were previously excluded. Another important step forward consists in the visual inspection of each source in the bands from u* to MIPS 24 μm. According to their “environment” in the different bands, we are able to highlight different cases of study and calibrate an appropriate photometric procedure for the objects affected by confusion issues. We estimate that the contribution of RS-NIRdark sources to the cosmic SFRD at 3 < z < 5 is ∼10%–25% of that based on UV-selected galaxies.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3