The Sloan Digital Sky Survey Reverberation Mapping Project: The M BH–Host Relations at 0.2 ≲ z ≲ 0.6 from Reverberation Mapping and Hubble Space Telescope Imaging

Author:

Li Jennifer I-HsiuORCID,Shen YueORCID,Ho Luis C.ORCID,Brandt W. N.ORCID,Dalla Bontà ElenaORCID,Alvarez G. FonsecaORCID,Grier C. J.ORCID,Santisteban J. V. HernandezORCID,Homayouni Y.ORCID,Horne KeithORCID,Peterson B. M.ORCID,Schneider D. P.ORCID,Trump Jonathan R.ORCID

Abstract

Abstract We present the results of a pilot Hubble Space Telescope (HST) imaging study of the host galaxies of ten quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Probing more than an order of magnitude in black hole (BH) and stellar masses, our sample is the first statistical sample to study the BH–host correlations beyond z > 0.3 with reliable BH masses from reverberation mapping rather than from single-epoch spectroscopy. We perform image decomposition in two HST bands (UVIS-F606W and IR-F110W) to measure host colors and estimate stellar masses using empirical relations between broadband colors and the mass-to-light ratio. The stellar masses of our targets are mostly dominated by a bulge component. The BH masses and stellar masses of our sample broadly follow the same correlations found for local RM active galactic nuclei and quiescent bulge-dominant galaxies, with no strong evidence of evolution in the relation to z ∼ 0.6. We further compare the host light fraction from HST imaging decomposition to that estimated from spectral decomposition. We find a good correlation between the host fractions derived with both methods. However, the host fraction derived from spectral decomposition is systematically smaller than that from imaging decomposition by ∼30%, indicating different systematics in both approaches. This study paves the way for upcoming more ambitious host galaxy studies of quasars with direct RM-based BH masses at high redshift.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3