JWST Reveals a Luminous Infrared Source at the Position of the Failed Supernova Candidate N6946-BH1

Author:

Beasor Emma R.ORCID,Hosseinzadeh GriffinORCID,Smith NathanORCID,Davies BenORCID,Jencson Jacob E.ORCID,Pearson JeniveveORCID,Sand David J.ORCID

Abstract

Abstract N6946-BH1 (BH1) is the first plausible candidate for a failed supernova (SN), a peculiar event in which a massive star disappears without the expected bright SN, accompanied by collapse into a black hole (BH). Following a luminous outburst in 2009, the source experienced a significant decline in optical brightness, while maintaining a persistent IR presence. While it was proposed to be a potential failed SN, such behavior has been observed in SN impostor events in nearby galaxies. Here, we present late-time observations of BH1, taken 14 yr after disappearance, using JWST’s NIRCam and MIRI instruments to probe a never before observed region of the object’s spectral energy distribution (SED). We show for the first time that all previous observations of BH1 (pre- and postdisappearance) are actually a blend of at least three sources. In the near-infrared, BH1 is notably fainter than the progenitor but retains similar brightness to its state in 2017. In the mid-infrared the flux appears to have brightened compared to the inferred fluxes from the best-fitting progenitor model. The total luminosity of the source is between 13% and 25% that of the progenitor. We also show that the IR SED appears consistent with polycyclic aromatic hydrocarbon features that arise when dust is illuminated by near-ultraviolet radiation. At present, the interpretation of BH1 remains uncertain. The observations match expectations for a stellar merger, but theoretical ambiguity in the failed SN hypothesis makes it hard to dismiss.

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3