Role of Magnetic Fields in Fueling Seyfert Nuclei

Author:

Hu YueORCID,Lazarian A.ORCID,Beck Rainer,Xu SiyaoORCID

Abstract

Abstract Molecular gas is believed to be the fuel for star formation and nuclear activity in Seyfert galaxies. To explore the role of magnetic fields in funneling molecular gas into the nuclear region, measurements of the magnetic fields embedded in molecular gas are needed. By applying the new velocity gradient technique (VGT) to CO isotopolog data from the Atacama Large Millimeter/submillimeter Array and the Plateau de Bure Interferometer Arcsecond Whirlpool Survey, we obtain the first detection of CO-associated magnetic fields in several nearby Seyfert galaxies and their unprecedented high-resolution magnetic field maps. The VGT-measured magnetic fields in molecular gas globally agree with those inferred from existing HAWC+ dust polarization and Very Large Array synchrotron polarization. An overall good alignment between the magnetic fields traced by VGT-CO and by synchrotron polarization may support the correlation between star formation and cosmic-ray generation. We find that the magnetic fields traced by VGT-CO have a significant radial component in the central regions of most Seyferts in our sample, where efficient molecular gas inflows or outflow may occur. In particular, we find local misalignment between the magnetic fields traced by CO and dust polarization within the nuclear ring of NGC 1097, and the former aligns with the central bar’s orientation. This misalignment reveals different magnetic field configurations in different gas phases and may provide an observational diagnostic for the ongoing multiphase fueling of Seyfert activity.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3