Nature of striation in 21 cm channel Maps: velocity caustics

Author:

Hu Yue12ORCID,Lazarian A23,Alina D4ORCID,Pogosyan D5,Ho Ka Wai2

Affiliation:

1. Department of Physics, University of Wisconsin-Madison , Madison, WI 53706 , USA

2. Department of Astronomy, University of Wisconsin-Madison , Madison, WI 53706 , USA

3. Centro de Investigación en Astronomía, Universidad Bernardo O’Higgins , Santiago, General Gana 1760, 8370993 , Chile

4. Department of Physics, School of Sciences and Humanities, Nazarbayev University , Astana 010000 , Kazakhstan

5. Department of Physics, University of Alberta , Edmonton, Alberta T6G 2E1 , Canada

Abstract

ABSTRACTThe alignment of striated intensity structures in thin neutral hydrogen (H i) spectroscopic channels with Galactic magnetic fields has been observed. However, the origin and nature of these striations are still debatable. Some studies suggest that the striations result solely from real cold-density filaments without considering the role of turbulent velocity fields in shaping the channel’s intensity distribution. To determine the relative contribution of density and velocity in forming the striations in channel maps, we analyse synthetic observations of channel maps obtained from realistic magnetized multiphase H i simulations with thermal broadening included. We vary the thickness of the channel maps and apply the Velocity Decomposition Algorithm to separate the velocity and density contributions. In parallel, we analyse GALFA-H i observations and compare the results. Our analysis shows that the thin channels are dominated by velocity contribution, and velocity caustics mainly generate the H i striations. We show that velocity caustics can cause a correlation between unsharp-masked H i structures and far-infrared emission. We demonstrate that the linear H i fibers revealed by the Rolling Hough Transform (RHT) in thin velocity channels originate from velocity caustics. As the thickness of channel maps increases, the relative contribution of density fluctuations in channel maps increases and more RHT-detected fibers tend to be perpendicular to the magnetic field. Conversely, the alignment with the magnetic field is the most prominent in thin channels. We conclude that similar to the velocity channel gradients (VChGs) approach, RHT traces magnetic fields through the analysis of velocity caustics in thin channel maps.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3