Abstract
Abstract
Using an analytic model, we derive the eigenfrequencies for thermal Rossby waves that are trapped radially and latitudinally in an isentropically stratified atmosphere. We ignore the star’s curvature and work in an equatorial f-plane geometry. The propagation of inertial waves is found to be sensitive to the relative direction of the wavevector to the zonal direction. Prograde propagating thermal Rossby waves are naturally trapped in the radial direction for frequencies above a critical threshold, which depends on the angle of propagation. Below the threshold frequency, there exists a continuous spectrum of prograde and retrograde inertial waves that are untrapped in an isentropic atmosphere but can be trapped by gradients in the specific entropy density. Finally, we discuss the implications of these waves on recent observations of inertial oscillations in the Sun, as well as in numerical simulations.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献