A Unifying Model of Mixed Inertial Modes in the Sun

Author:

Jain RekhaORCID,Hindman Bradley W.ORCID,Blume CatherineORCID

Abstract

Abstract We present an analytical model that unifies many of the inertial waves that have been recently observed on the surface of the Sun, as well as many other modes that have been theoretically predicted—but have yet to be observed—into a single family of mixed inertial modes. By mixed, we mean that the prograde- and retrograde-propagating members of this family have different restoring forces and hence different behavior. Thermal Rossby waves exist as prograde-propagating waves, while the high-frequency retrograde (HFR) wave is one example of a member of the retrograde branch. This family of mixed modes has fully 3D motions that satisfy the anelastic form of the continuity condition. As such, the horizontal velocity is both vortical and divergent with the later flow component associated with a dynamically important radial velocity. The modes are differentiated by the number of nodes in latitude, with the lowest latitudinal order corresponding to the traditional thermal Rossby wave of Busse, the first latitudinal overtone to the mixed mode of Bekki et al., and the second overtone to the HFR wave discovered by Hanson et al. There also exist infinitely more modes of higher latitudinal order whose frequencies increase as the order increases. These higher overtones may correspond to many of the inertial modes that have been recently identified by numerical eigenmode solvers.

Funder

NASA ∣ SMD ∣ Heliophysics Division

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3