An ALMA Glimpse of Dense Molecular Filaments Associated with High-mass Protostellar Systems in the Large Magellanic Cloud

Author:

Tokuda KazukiORCID,Harada NaotoORCID,Tanaka Kei E. I.ORCID,Inoue TsuyoshiORCID,Shimonishi TakashiORCID,Zhang YichenORCID,Sewiło MartaORCID,Kunitoshi YuriORCID,Konishi AyuORCID,Fukui YasuoORCID,Kawamura AkikoORCID,Onishi ToshikazuORCID,Machida Masahiro N.ORCID

Abstract

Abstract Recent millimeter/submillimeter facilities have revealed the physical properties of filamentary molecular clouds in relation to high-mass star formation. A uniform survey of the nearest, face-on star-forming galaxy, the Large Magellanic Cloud (LMC), complements the Galactic knowledge. We present ALMA survey data with a spatial resolution of ∼0.1 pc in the 0.87 mm continuum and HCO+ (4–3) emission toward 30 protostellar objects with luminosities of 104–105.5 L in the LMC. The spatial distributions of the HCO+ (4–3) line and thermal dust emission are well correlated, indicating that the line effectively traces dense, filamentary gas with an H2 volume density of ≳105 cm−3 and a line mass of ∼103–104 M pc−1. Furthermore, we obtain an increase in the velocity line widths of filamentary clouds, which follows a power-law dependence on their H2 column densities with an exponent of ∼0.5. This trend is consistent with observations toward filamentary clouds in nearby star-forming regions within ≲1 kpc from us and suggests enhanced internal turbulence within the filaments due to surrounding gas accretion. Among the 30 sources, we find that 14 are associated with hub-filamentary structures, and these complex structures predominantly appear in protostellar luminosities exceeding ∼5 × 104 L . The hub-filament systems tend to appear in the latest stages of their natal cloud evolution, often linked to prominent H ii regions and numerous stellar clusters. Our preliminary statistics suggest that the massive filaments accompanied by hub-type complex features may be a necessary intermediate product in forming extremely luminous high-mass stellar systems capable of ultimately dispersing the parent cloud.

Funder

National Astronomical Observatory of Japan

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3