Gamma-Ray Burst Constraints on Cosmological Models from the Improved Amati Correlation

Author:

Liu Yang,Liang Nan,Xie Xiaoyao,Yuan ZunliORCID,Yu Hongwei,Wu Puxun

Abstract

Abstract An improved Amati correlation was constructed in ApJ 931 (2022) 50 by us recently. In this paper, we further study constraints on the ΛCDM and wCDM models from the gamma-ray bursts (GRBs) standardized with the standard and improved Amati correlations, respectively. By using the Pantheon Type Ia supernova sample to calibrate the latest A220 GRB data set, the GRB Hubble diagram is obtained model-independently. We find that at the high-redshift region (z > 1.4) the GRB distance modulus from the improved Amati correlation is larger apparently than that from the standard Amati one. The GRB data from the standard Amati correlation only give a lower bound limit on the present matter density parameter Ωm0, while the GRBs from the improved Amati correlation constrain the Ωm0 with the 68% confidence level to be 0.308 0.230 + 0.066 and 0.307 0.290 + 0.057 in the ΛCDM and wCDM models, respectively, which are very consistent with those given by other current popular observational data including baryon acoustic oscillation, cosmic microwave background (CMB) radiation, and so on. Once the H(z) data are added in our analysis, the constraint on the Hubble constant H 0 can be achieved. We find that two different correlations provide slightly different H 0 results but the marginalized mean values seem to be close to that from the Planck 2018 CMB radiation observations.

Funder

National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3