A Comprehensive Analysis of the Gravitational Wave Events with the Stacked Hilbert–Huang Transform: From Compact Binary Coalescence to Supernova

Author:

Hu Chin-PingORCID,Lin Lupin Chun-CheORCID,Pan Kuo-ChuanORCID,Li Kwan-LokORCID,Yen Chien-ChangORCID,Kong Albert K. H.ORCID,Hui C. Y.ORCID

Abstract

Abstract We analyze the gravitational wave signals with a model-independent time-frequency analysis, which is improved from the Hilbert–Huang transform (HHT) and optimized for characterizing the frequency variability on the time-frequency map. Instead of the regular HHT algorithm, i.e., obtaining intrinsic mode functions with ensemble empirical mode decomposition and yielding the instantaneous frequencies, we propose an alternative algorithm that operates the ensemble mean on the time-frequency map. We systematically analyze the known gravitational wave events of the compact binary coalescence observed in the first gravitational-wave transient catalog, and in the simulated gravitational wave signals from core-collapse supernovae (CCSNe) with our method. The time-frequency maps of the binary black hole coalescence cases show much more detail compared to those wavelet spectra. Moreover, the oscillation in the instantaneous frequency caused by mode-mixing could be reduced with our algorithm. For the CCSNe data, the oscillation from the proto-neutron star and the radiation from the standing accretion shock instability can be precisely determined with the HHT in great detail. More importantly, the initial stage of different modes of oscillations can be clearly separated. These results provide new hints for further establishment of the detecting algorithm and new probes to investigate the underlying physical mechanisms.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3