Fast Reconstruction of 3D Density Distribution around the Sun Based on the MAS by Deep Learning

Author:

Rahman Sumiaya,Shin SeungheonORCID,Jeong Hyun-JinORCID,Siddique AshrafORCID,Moon Yong-JaeORCID,Park EunsuORCID,Kang JihyeORCID,Bae Sung-HoORCID

Abstract

Abstract This study is the first attempt to generate a three-dimensional (3D) coronal electron density distribution based on the pix2pixHD model, whose computing time is much shorter than that of the magnetohydrodynamic (MHD) simulation. For this, we consider photospheric solar magnetic fields as input, and electron density distribution simulated with the MHD Algorithm outside a Sphere (MAS) at a given solar radius is taken as output. We consider 155 pairs of Carrington rotations as inputs and outputs from 2010 June to 2022 April for training and testing. We train 152 deep-learning models for 152 solar radii, which are taken up to 30 solar radii. The artificial intelligence (AI) generated 3D electron densities from this study are quite consistent with the simulated ones from lower radii to higher radii, with an average correlation coefficient 0.97. The computing time of testing data sets up to 30 solar radii of 152 deep-learning models is about 45.2 s using the NVIDIA TITAN XP graphics-processing unit, which is much less than the typical simulation time of MAS. We find that the synthetic coronagraphic images estimated from the deep-learning models are similar to the Solar Heliospheric Observatory (SOHO)/Large Angle and Spectroscopic Coronagraph C3 coronagraph data, especially during the solar minimum period. The AI-generated coronal density distribution from this study can be used for space weather models on a near-real-time basis.

Funder

Korea Astronomy and Space Science Institute

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3