Near-real-time 3D Reconstruction of the Solar Coronal Parameters Based on the Magnetohydrodynamic Algorithm outside a Sphere Using Deep Learning

Author:

Rahman SumiayaORCID,Jeong Hyun-JinORCID,Siddique AshrafORCID,Moon Yong-JaeORCID,Lawrance BendictORCID

Abstract

Abstract For the first time, we generate solar coronal parameters (density, magnetic field, radial velocity, and temperature) on a near-real-time basis by deep learning. For this, we apply the Pix2PixCC deep-learning model to three-dimensional (3D) distributions of these parameters: synoptic maps of the photospheric magnetic field as an input and the magnetohydrodynamic algorithm outside a sphere (MAS) results as an output. To generate the 3D structure of the solar coronal parameters from 1 to 30 solar radii, we train and evaluate 152 distinct deep-learning models. For each parameter, we consider the data of 169 Carrington rotations from 2010 June to 2023 February: 132 for training and 37 for testing. The key findings of our study are as follows: First, our deep-learning models successfully reconstruct the 3D distributions of coronal parameters from 1 to 30 solar radii with an average correlation coefficient of 0.98. Second, during the solar active and quiet periods, the AI-generated data exhibits consistency with the target MAS simulation data. Third, our deep-learning models for each parameter took a remarkably short time (about 16 s for each parameter) to generate the results with an NVIDIA Titan XP GPU. As the MAS simulation is a regularization model, we may significantly reduce the simulation time by using our results as an initial configuration to obtain an equilibrium condition. We hope that the generated 3D solar coronal parameters can be used for the near-real-time forecasting of heliospheric propagation of solar eruptions.

Funder

National Research Foundation of Korea

MSIT ∣ Institute for Information and Communications Technology Promotion

Korea Meteorological Administration

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3