Molecular Gas Reservoirs in Massive Quiescent Galaxies at z ∼ 0.7 Linked to Late-time Star Formation

Author:

Woodrum CharityORCID,Williams Christina C.ORCID,Rieke MarciaORCID,Leja JoelORCID,Johnson Benjamin D.ORCID,Bezanson RachelORCID,Kennicutt RobertORCID,Spilker JustinORCID,Tacchella SandroORCID

Abstract

Abstract We explore how the presence of detectable molecular gas depends on the inferred star formation histories (SFHs) in eight massive, quiescent galaxies at z ∼ 0.7. Half of the sample have clear detections of molecular gas, traced by CO(2–1). We find that the molecular gas content is unrelated to the rate of star formation decline prior to the most recent 1 Gyr, suggesting that the gas reservoirs are not left over from their primary star formation epoch. However, the recent SFHs of CO-detected galaxies demonstrate evidence for secondary bursts of star formation in their last Gyr. The fraction of stellar mass formed in these secondary bursts ranges from f burst ≈ 0.3%–6% and ended between t end-burst ≈ 0–330 Myr ago. The CO-detected galaxies form a higher fraction of mass in the last Gyr ( f M 1 Gyr = 2.6 % ± 1.8 % ) compared to the CO-undetected galaxies ( f M 1 Gyr = 0.2 % ± 0.1 % ). The galaxies with gas reservoirs have enhanced late-time star formation, highlighting this as a contributing factor to the observed heterogeneity in the gas reservoirs in high-redshift quiescent galaxies. We find that the amount of gas and star formation driven by these secondary bursts are inconsistent with that expected from dry minor mergers, and instead are likely driven by recently accreted gas, i.e., gas-rich minor mergers. This conclusion would not have been made based on SFRUV+IR measurements alone, highlighting the power of detailed SFH modeling in the interpretation of gas reservoirs. Larger samples are needed to understand the frequency of low-level rejuvenation among quiescent galaxies at intermediate redshifts, and to what extent this drives the diversity of molecular gas reservoirs.

Funder

National Science Foundation

NASA ∣ NASA Headquarters

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3