In pursuit of giants

Author:

Donevski D.ORCID,Damjanov I.,Nanni A.,Man A.,Giulietti M.,Romano M.,Lapi A.,Narayanan D.,Davé R.,Shivaei I.,Sohn J.,Junais ,Pantoni L.,Li Q.

Abstract

The physical mechanisms that link the termination of star formation in quiescent galaxies and the evolution of their baryonic components, stars, and the interstellar medium (ISM; dust, gas, and metals) are poorly constrained beyond the local Universe. In this work, we characterise the evolution of the dust content in 545 quiescent galaxies observed at 0.1 < z < 0.6 as part of the hCOSMOS spectroscopic redshift survey. This is, to date, the largest sample of quiescent galaxies at intermediate redshifts for which the dust, stellar, and metal abundances are consistently estimated. We analyse how the crucial markers of a galaxy dust life cycle, such as specific dust mass (Mdust/M), evolve with different physical parameters, namely gas-phase metallicity (Zgas), time since quenching (tquench), stellar mass (M), and stellar population age. We find morphology to be an important factor in the large scatter in Mdust/M (∼2 orders of magnitude). Quiescent spirals exhibit strong evolutionary trends of specific dust mass with M, stellar age, and galaxy size, in contrast to the little to no evolution experienced by ellipticals. When transitioning from solar to super-solar metallicities (8.7 ≲ 12 + log(O/H)≲9.1), quiescent spirals undergo a reversal in Mdust/M, indicative of a change in dust production efficiency. By modelling the star formation histories of our objects, we unveil a broad dynamical range of post-quenching timescales (60 Myr < tquench < 3.2 Gyr). We show that Mdust/M is highest in recently quenched systems (tquench < 500 Myr), but its further evolution is non-monotonic, as a consequence of different pathways for dust formation, growth, or removal on various timescales. Our data are best described by simulations that include dust growth in the ISM. While this process is prevalent in the majority of galaxies, for ∼15% of objects we find evidence of additional dust content acquired externally, most likely via minor mergers. Altogether, our results strongly suggest that prolonged dust production on a timescale of 0.5 − 1 Gyr since quenching may be common in dusty quiescent galaxies at intermediate redshifts, even if their gas reservoirs are heavily exhausted (i.e. cold gas fraction < 1 − 5%).

Funder

National Science Center

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3