Constraining the Stochastic Gravitational Wave from String Cosmology with Current and Future High-frequency Detectors

Author:

Li Yufeng,Fan Xilong,Gou Lijun

Abstract

Abstract Pre–Big Bang models in string cosmology predict a relic background of gravitational wave radiation in the early universe. The spectrum of this background shows that the energy density rises rapidly with frequency, which is an interesting target for high-frequency (i.e., kilohertz) detectors. In this paper, we discussed the constraining power of multiple configurations of current and future gravitational wave detector (GWD) networks to the stochastic background predicted in string cosmology. The constraining power is jointly determined by the overlap reduction function and the sensitivity curves of multiple detectors. And we further elaborated on the possible contribution of a future Chinese detector and a kilohertz detector to the constraining power of detector network for stochastic background in string cosmology. Our results show that the detectability of the GWD network for the string cosmology gravitational wave background will improve considerably with the joining of a Chinese detector. This is because a Chinese detector (e.g., located at Wuhan), together with KAGRA, has a better overlap reduction function than the laser interferometer gravitational wave observatory detector pair, and therefore lead to more stringent limits for stochastic background detection. And with ideal overlap reduction function, namely, colocated detectors, a kilohertz sensitivity curve has better performance than previous detectors for stochastic background detection. Finally, the results are compared with the limitations given by the observational constraint of the Big Bang nucleosynthesis bound.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3