PINT: Maximum-likelihood Estimation of Pulsar Timing Noise Parameters

Author:

Susobhanan AbhimanyuORCID,Kaplan David L.ORCID,Archibald Anne M.ORCID,Luo JingORCID,Ray Paul S.ORCID,Pennucci Timothy T.ORCID,Ransom Scott M.ORCID,Agazie GabriellaORCID,Fiore WilliamORCID,Larsen BjornORCID,O’Neill PatrickORCID,van Haasteren RutgerORCID,Anumarlapudi AkashORCID,Bachetti MatteoORCID,Bhakta DevenORCID,Champagne Chloe A.ORCID,Cromartie H. ThankfulORCID,Demorest Paul B.ORCID,Jennings Ross J.ORCID,Kerr MatthewORCID,Levina SashaORCID,McEwen AlexanderORCID,Shapiro-Albert Brent J.ORCID,Swiggum Joseph K.ORCID

Abstract

Abstract PINT is a pure-Python framework for high-precision pulsar timing developed on top of widely used and well-tested Python libraries, supporting both interactive and programmatic data analysis workflows. We present a new frequentist framework within PINT to characterize the single-pulsar noise processes present in pulsar timing data sets. This framework enables parameter estimation for both uncorrelated and correlated noise processes, as well as model comparison between different timing and noise models in a computationally inexpensive way. We demonstrate the efficacy of the new framework by applying it to simulated data sets as well as a real data set of PSR B1855+09. We also describe the new features implemented in PINT since it was first described in the literature.

Funder

National Science Foundation

DOD ∣ USN ∣ Office of Naval Research

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3