Consistent Analysis of the AGN LF in X-Ray and MIR in the XMM-LSS Field

Author:

Runburg JackORCID,Farrah DuncanORCID,Sajina AnnaORCID,Lacy MarkORCID,Lidua JennaORCID,Hatziminaoglou EvanthiaORCID,Brandt W. N.ORCID,Chen Chien-Ting J.ORCID,Nyland KristinaORCID,Shirley RaphaelORCID,Clements D. L.ORCID,Pitchford Lura K.

Abstract

Abstract The luminosity function of active galactic nuclei (AGN) probes the history of supermassive black hole assembly and growth across cosmic time. To mitigate selection biases, we present a consistent analysis of the AGN luminosity functions (LFs) derived for both X-ray and mid-infrared (MIR) selected AGN in the XMM-Large Scale Structure field. There are 4268 AGN used to construct the MIR luminosity function (IRLF) and 3427 AGN used to construct the X-ray luminosity function (XLF), providing the largest census of the AGN population out to z = 4 in both bands with significant reduction in uncertainties. We are able for the first time to see the knee of the IRLF at z > 2 and observe a flattening of the faint-end slope as redshift increases. The bolometric luminosity density, a proxy for the cosmic black hole accretion history, computed from our LFs, shows a peak at z ≈ 2.25, consistent with recent estimates of the peak in the star formation rate density (SFRD). However, at earlier epochs, the AGN luminosity density is flatter than the SFRD. If confirmed, this result suggests that the build up of black hole mass outpaces the growth of stellar mass in high-mass systems at z ≳ 2.5. This is consistent with observations of redshift z ∼ 6 quasars that lie above the local Mσ relationship. The luminosity density derived from the IRLF is higher than that from the XLF at all redshifts. This is consistent with the dominant role of obscured AGN activity in the cosmic growth of supermassive black holes.

Funder

NSF

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3