The Nature of LoBAL QSOs. II. HST/WFC3 Observations Reveal Host Galaxies Dominated by Mergers

Author:

Lazarova Mariana S.ORCID,Canalizo GabrielaORCID,Lacy MarkORCID,Behn Wyatt,Raub Kaitlyn,Bennert Vardha N.ORCID,Farrah DuncanORCID

Abstract

Abstract Low-ionization broad absorption line QSOs (LoBALs) are suspected to be merging systems in which extreme, active galactic nucleus-driven outflows have been triggered. Whether or not LoBALs are uniquely associated with mergers, however, has yet to be established. To characterize the morphologies of LoBALs, we present the first high-resolution morphological analysis of a volume-limited sample of 22 Sloan Digital Sky Survey (SDSS)-selected LoBALs at 0.5 < z < 0.6 from Hubble Space Telescope Wide Field Camera 3 observations. Host galaxies are resolved in 86% of the systems in F125W, which is sensitive to old stellar populations, while only 18% are detected in F475W, which traces young, unobscured stellar populations. Signs of recent or ongoing tidal interaction are present in 45%–64% of the hosts, including double nuclei, tidal tails, bridges, plumes, shells, and extended debris. Ongoing interaction with a companion is apparent in 27%−41% of the LoBALs, with as much as 1/3 of the sample representing late-stage mergers at projected nuclear separations <10 kpc. Detailed surface brightness modeling indicates that 41% of the hosts are bulge dominated while only 18% are disks. We discuss trends in various properties as a function of merger stage and parametric morphology. Notably, mergers are associated with slower, dustier winds than those seen in undisturbed/unresolved hosts. Our results favor an evolutionary scenario in which quasar-level accretion during various merger stages is associated with the observed outflows in low-z LoBALs. We discuss differences between LoBALs and FeLoBALs and show that selection via the traditional balnicity index would have excluded all but one of the mergers.

Funder

National Science Foundation

University of Northern Colorado

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3